Instructor: Dr. Chengpeng "Charlie" Bi, Ph.D. Professor of Bioinformatics and Computer Science Homepage: cbi Office hours: by appointment
*) Final project is due on Nov. 29 0) HW#5 is due on Nov. 15 1) project#2 is due Nov. 1 2) homework# 3 is due Oct. 11, hw#4 is due Oct 25. 3) project#1 has two-day extension (report maximum pages: 15) 4) choose your topic of final project by the end of October
(1) A Tutorial on Hidden Markov Model by Lawrence R. Rabiner [ PDF ] (2) Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., and Wootton, J.C. 1993. Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science, 262, 208-14. [ PDF ] (3) Optimization by simulated annealing ( PDF ) (4) Random Projection ( PDF ) (5) algorithm papers: k-means and fuzzy k-means ( PDF ) (6) A tutorial on SVM ( PDF )
(1) A "pattern-driven" motif algorithm implementation: data [FASTA format] for project 1 (2) Performance evaluation of PWM motif algorithms: project 2
Q1: in handout Q2: in handout Q3: Given the following sequence (297 bps upstream of a gene), atacccacaaacccacacacccacacattcacttgctcacctggactttgatatctctacc actgtatccctgccaatatctacagagtgggtaaagggataggcatcaggtcactgggttg cccaagcaggaagtctgggttccctaacaactttttctaagctaatgctcctggatgatga tgaaaaaggaggtggggaatggatgaaattttataacagggtgcagaggcagggtcaggat aaaaggcccagttggaggctgcagcagggtgcagggcagtcagaccaggacca (1) Estimate the parameters for M0, M1 and M2 respectively; (2) Using M0 Markov chains as the null hypothesis to calculate the chi-square values for M1 and M2 respectively and test which model is the best fit.
(2) Gusfield D (2004) An Overview of Combinatorial Methods for Haplotype Inference. In: Computational Methods for SNPs and Haplotype Inference, S. Istrail, M. W aterman, and A. Clark (eds). Lecture Notes in Computer Science, vol. 2983, Springer, p. 9-25, 2004. [ PDF ]
(3) Bonizzoni P et al. (2003) The haplotyping problems: An overview of computational models and solutions. J. Comput. Sci. & Technol., 18(6):675-688. [ PDF ]